Exercise XI

1. Use the Intermediate Value Theorem and Rolle's Theorem to prove that

$$
x^{7}+3 x^{5}+x^{3}+x+1=0
$$

has exactly one real solution.
2. The graph of the function $y=f(x)$ is a quadrant of a circle as illustrated below. Determine $\int_{5}^{7} f^{-1}(x) \mathrm{d} x$:

3. Let $f(x)=x$ and let P_{n} be the partition of the interval $[a, b]$ into n equal sub-intervals. Verify that

$$
\lim _{n \rightarrow \infty} U\left(f, P_{n}\right)=\frac{1}{2} b^{2}-\frac{1}{2} a^{2}
$$

(Note: $\sum_{i=1}^{n} i=\frac{1}{2} n(n+1)$.)
4. For each of the following functions $f(x)$, find $\int_{-2}^{2} f(x) \mathrm{d} x$:
(i) $f(x)=\left\{\begin{array}{ll}1, & x \leq 1 \\ 2, & x>1 .\end{array}\right.$, (ii) $f(x)=|x|$
5. Let $F(x)=\int_{2}^{x} t^{3} \mathrm{~d} t$. Determine $F^{\prime}(x)$.
6. Determine the Taylor polynomial of degree 8 around 0 for $\cos (x)$.
7. Determine the Taylor polynomial of degree 4 around 0 for $(1+x)^{\frac{1}{2}}$
8. Use the Taylor polynomial of degree 5 around 0 for $\sqrt{1+x}$ to estimate $\sqrt{2}$.
9. Show that the Taylor expansion around 0 for $\frac{1}{1-x}$ does not converge for $|x|>1$.

