Exercise XI

1. Use the Intermediate Value Theorem and Rolle's Theorem to prove that

$$x^7 + 3x^5 + x^3 + x + 1 = 0$$

has exactly one real solution.

2. The graph of the function y = f(x) is a quadrant of a circle as illustrated below. Determine $\int_{5}^{7} f^{-1}(x) dx$:

3. Let f(x) = x and let P_n be the partition of the interval [a, b] into n equal sub-intervals. Verify that

$$\lim_{n \to \infty} U(f, P_n) = \frac{1}{2}b^2 - \frac{1}{2}a^2$$

(Note:
$$\sum_{i=1}^{n} i = \frac{1}{2}n(n+1).)$$

4. For each of the following functions f(x), find $\int_{-2}^{2} f(x) dx$:

(i)
$$f(x) = \begin{cases} 1, & x \le 1\\ 2, & x > 1. \end{cases}$$
, (ii) $f(x) = |x|$

- 5. Let $F(x) = \int_2^x t^3 dt$. Determine F'(x).
- 6. Determine the Taylor polynomial of degree 8 around 0 for $\cos(x)$.
- 7. Determine the Taylor polynomial of degree 4 around 0 for $(1+x)^{\frac{1}{2}}$
- 8. Use the Taylor polynomial of degree 5 around 0 for $\sqrt{1+x}$ to estimate $\sqrt{2}$.
- 9. Show that the Taylor expansion around 0 for $\frac{1}{1-x}$ does not converge for |x| > 1.